Lenovo AMD EPYC 7262 processor 3.2 GHz 128 MB L3

SKU
4XG7A63350
Login for pricing
In Stock: 3 available
AMD EPYC 7262, 3.2/3.4 GHz, 8C/16T, 128 MB L3 Cache
More Information
Processor socket Socket SP3
Processor cores 8
Processor family AMD EPYC
Processor lithography 7 nm
SKU 4XG7A63350
EAN 0889488527687
Manufacturer Lenovo
Availability In Stock
Processor
Processor base frequency3.2 GHz
Processor manufacturerAMD
Memory bandwidth supported by processor (max)204.8 GB/s
Thermal Design Power (TDP)155 W
Processor cache128 MB
Processor model7262
Processor threads16
Processor operating modes64-bit
Processor boost frequency3.4 GHz
Processor lithography7 nm
Processor familyAMD EPYC
Processor cores8
Processor socketSocket SP3
Processor cache typeL3
Memory
Memory types supported by processorDDR4-SDRAM
Memory clock speeds supported by processor3200 MHz
Memory bandwidth supported by processor (max)204.8 GB/s
Memory channelsOcta-channel
Graphics
Discrete graphics cardNo
On-board graphics card modelNot available
On-board graphics cardNo
Discrete graphics card modelNot available
Power
Thermal Design Power (TDP)155 W
Features
Thermal Design Power (TDP)155 W
Technical details
Thermal Design Power (TDP)155 W
Processor cache typeL3

You may also be interested in

Compare Products
Product Lenovo AMD EPYC 7262 processor 3.2 GHz 128 MB L3 Lenovo AMD EPYC 7262 processor 3.2 GHz... Login for pricing
Fujitsu Intel Xeon Silver 4210 processor 2.2 GHz 14 MB L3 Fujitsu Intel Xeon Silver 4210 process... Login for pricing
Fujitsu Intel Xeon Silver 4215 processor 2.5 GHz 11 MB L3 Fujitsu Intel Xeon Silver 4215 process... Login for pricing
Lenovo EPYC AMD 7302 processor 3 GHz 128 MB L3 Lenovo EPYC AMD 7302 processor 3 GHz 1... Login for pricing
Fujitsu Xeon Intel Silver 4314 processor 2.4 GHz 24 MB Box
Bestseller
Fujitsu Xeon Intel Silver 4314 process... Login for pricing
Fujitsu Xeon Intel Silver 4310 processor 2.1 GHz 18 MB Box
New
Fujitsu Xeon Intel Silver 4310 process... Login for pricing
SKU
4XG7A63350
S26361-F4082-L110
S26361-F4082-L115
4XG7A38058
PY-CP62XJ
PY-CP62XH
Description
No
No
No
2nd Gen AMD EPYC are a new breed of server processors which sets a higher standard for data centers.
Groundbreaking design makes AMD EPYC #1 in performance across industry standard benchmarks, holding 80 world records to date. Performance you can count on to propel your modern data center workloads. ’Hardened at the Core’ protection helps defend against side-channel attacks and EPYC's secure encrypted virtualization features help keep your data safe. The processor’s agility helps you manage new deployments and changing workloads, with the system resources you need, simply and cost-effectively. AMD is the server processor company you can count on for innovation and leadership today and into the future.

Performance Leadership
Virtually everything runs better on AMD EPYC 7002 Series powered servers. Whether you run enterprise applications, virtualized and cloud computing environments, software-defined infrastructure, high-performance computing, or data analytic applications. EPYC processor-based systems are #1 on industry benchmarks, including those measuring integer, floating-point, virtualization, database, and HPC performance. AMD EPYC 7742 processor has set new world records that establish AMD as THE performance leader.

The secret is under the hood
AMD Infinity Architecture is a hybrid multi-die architecture that is reaching new heights with AMD EPYC 7002 Series processors. AMD Infinity Architecture now decouples two streams: eight dies for the processor cores, and one I/O die that supports security and communication outside the processor. With the agility to deliver the leading-edge process technology for CPU cores while letting I/O circuitry develop at its own rate, new capabilities can be brought to market faster with EPYC because its die design is not monolithic. This has allowed EPYC to race to leadership in the market and continue to innovate in the future.

Forged from the finest silicon
AMD is first to market an x86 processor based on 7nm technology. With double the core density and optimizations that improve instructions per cycle, the result is 4x the Floating-Point performance of 1st Gen AMD EPYC.

7nm process technology also brings energy efficiency. 2nd Gen AMD EPYC can provide the same performance at half the power consumption.

EPYC by the numbers
AMD EPYC has been engineered for data centers that rely on CPU performance. From oil and gas exploration, to in-memory databases, to big data analytics to production rendering to standard data center applications, highly parallel workloads have more cores to work with. AMD EPYC 7002 generation processors scale from 8 to 64 cores (16 to 128 threads per socket). No other x86 vendor today enables such a core density in the market.

Be top of the security chain
AMD EPYC is ‘Hardened at the Core’ with advanced security features. It is the first server CPU with an integrated and dedicated security processor providing the foundation for Secure Boot, Secure Memory Encryption (SME) and Secure Encrypted Virtualization (SEV). So you can worry less about data risk and focus more on running your business.

Enabling software boot without corruption
The AMD EPYC processor secure root of trust is designed to validate the initial BIOS software boot without corruption. In virtualized environments, you can cryptographically check that your entire software stack is booted without corruption on a cloud server or services you choose.

Restrict internal vulnerabilities
With encrypted memory, attacks on the integrity of main memory (such as cold-boot attacks) are inhibited because any data obtained is encrypted. High-performance encryption engines integrated into the memory channels help speed performance. All of this is accomplished without modifications to your application software.

Safeguarding virtual and cloud infrastructure
2nd Gen EPYC helps safeguard privacy and integrity by encrypting each virtual machine with one of up to 509 unique encryption keys known only to the processor. This aids in protecting confidentiality of your data even if a malicious virtual machine finds a way into your virtual machine’s memory, or a compromised hypervisor reaches into a guest virtual machine.

All-in feature set
AMD takes pride in having transparent relationships with its partners and customers. This means having an “all-in” feature set that isn’t contrived to extract higher prices from customers.

With AMD EPYC, you have the agility to choose the processor your application requires without worrying about whether an important feature or capability is included. Whatever the number of cores you choose, you’ll have the I/O, memory, and memory bandwidth to accomplish what you need.

First-to-market PCIe 4.0 readiness
AMD EPYC is the first and only current x86-architecture server processor supporting PCIe 4.06. PCIe 4.0 delivers double the I/O performance over PCIe 3.0. You can use 128 lanes of I/O to double the network bandwidth that ties together HPC clusters and satisfies voracious needs for east-west bandwidth. For other application needs and in virtualized environments, you can connect with higher speed to GPU accelerators, NVMe drives, and you can even use integrated disk controllers to access spinning disks without the typical bottleneck of a PCIe RAID controller.

X86 compatibility
You can have confidence in AMD EPYC 7002 generation processors because virtually all software will just work. We work with the open source community and major software vendors to help ensure your applications and enabling software will work exceptionally well with EPYC. The broad ecosystem of open tools and libraries are more reasons why top cloud providers such as AWS, Microsoft Azure, Oracle Cloud are providing services to customers based on AMD EPYC processors.

1-Socket EPYC server advantage
Traditional CPUs typically must scale up to a 2-socket server to overcome an imbalance of resources. With AMD EPYC, 1-socket servers satisfy most of your workload needs, helping you increase density and reduce capital, power, and cooling expenses.

With a 1-socket EPYC server, you can cut licensing costs up to 50% with ‘per-socket software’ such as VMware vSphere or vSAN.
Intel® Turbo Boost Technology

Intel® Turbo Boost Technology dynamically increases the processor's frequency as needed by taking advantage of thermal and power headroom to give you a burst of speed when you need it, and increased energy efficiency when you don’t..

Intel® Hyper-Threading Technology

Intel® Hyper-Threading Technology (Intel® HT Technology) delivers two processing threads per physical core. Highly threaded applications can get more work done in parallel, completing tasks sooner.

Intel® Virtualization Technology (VT-x)

Intel® Virtualization Technology (VT-x) allows one hardware platform to function as multiple “virtual” platforms. It offers improved manageability by limiting downtime and maintaining productivity by isolating computing activities into separate partitions.

Intel® Virtualization Technology for Directed I/O (VT-d)

Intel® Virtualization Technology for Directed I/O (VT-d) continues from the existing support for IA-32 (VT-x) and Itanium® processor (VT-i) virtualization adding new support for I/O-device virtualization. Intel VT-d can help end users improve security and reliability of the systems and also improve performance of I/O devices in virtualized environments.

Intel® VT-x with Extended Page Tables (EPT)

Intel® VT-x with Extended Page Tables (EPT), also known as Second Level Address Translation (SLAT), provides acceleration for memory intensive virtualized applications. Extended Page Tables in Intel® Virtualization Technology platforms reduces the memory and power overhead costs and increases battery life through hardware optimization of page table management.

Intel® 64

Intel® 64 architecture delivers 64-bit computing on server, workstation, desktop and mobile platforms when combined with supporting software.¹ Intel 64 architecture improves performance by allowing systems to address more than 4 GB of both virtual and physical memory.

Instruction Set

An instruction set refers to the basic set of commands and instructions that a microprocessor understands and can carry out. The value shown represents which Intel’s instruction set this processor is compatible with.

Instruction Set Extensions

Instruction Set Extensions are additional instructions which can increase performance when the same operations are performed on multiple data objects. These can include SSE (Streaming SIMD Extensions) and AVX (Advanced Vector Extensions).

# of AVX-512 FMA Units

Intel® Advanced Vector Extensions 512 (AVX-512), new instruction set extensions, delivering ultra-wide (512-bit) vector operations capabilities, with up to 2 FMAs (Fused Multiply Add instructions), to accelerate performance for your most demanding computational tasks.

Intel® Speed Shift Technology

Intel® Speed Shift Technology uses hardware-controlled P-states to deliver dramatically quicker responsiveness with single-threaded, transient (short duration) workloads, such as web browsing, by allowing the processor to more quickly select its best operating frequency and voltage for optimal performance and power efficiency.

Intel® Deep Learning Boost (Intel® DL Boost)

A new set of embedded processor technologies designed to accelerate AI deep learning use cases. It extends Intel AVX-512 with a new Vector Neural Network Instruction (VNNI) that significantly increases deep learning inference performance over previous generations.

Intel® Resource Director Technology (Intel® RDT)

Intel® RDT brings new levels of visibility and control over how shared resources such as last-level cache (LLC) and memory bandwidth are used by applications, virtual machines (VMs) and containers.

Intel® Volume Management Device (VMD)

Intel® Volume Management Device (VMD) provides a common, robust method of hot plug and LED management for NVMe-based solid state drives.
Intel® Turbo Boost Technology

Intel® Turbo Boost Technology dynamically increases the processor's frequency as needed by taking advantage of thermal and power headroom to give you a burst of speed when you need it, and increased energy efficiency when you don’t.

Intel® Hyper-Threading Technology

Intel® Hyper-Threading Technology (Intel® HT Technology) delivers two processing threads per physical core. Highly threaded applications can get more work done in parallel, completing tasks sooner.

Intel® Virtualization Technology (VT-x)

Intel® Virtualization Technology (VT-x) allows one hardware platform to function as multiple “virtual” platforms. It offers improved manageability by limiting downtime and maintaining productivity by isolating computing activities into separate partitions.

Intel® Virtualization Technology for Directed I/O (VT-d)

Intel® Virtualization Technology for Directed I/O (VT-d) continues from the existing support for IA-32 (VT-x) and Itanium® processor (VT-i) virtualization adding new support for I/O-device virtualization. Intel VT-d can help end users improve security and reliability of the systems and also improve performance of I/O devices in virtualized environments.

Intel® VT-x with Extended Page Tables (EPT)

Intel® VT-x with Extended Page Tables (EPT), also known as Second Level Address Translation (SLAT), provides acceleration for memory intensive virtualized applications. Extended Page Tables in Intel® Virtualization Technology platforms reduces the memory and power overhead costs and increases battery life through hardware optimization of page table management.

Intel® 64

Intel® 64 architecture delivers 64-bit computing on server, workstation, desktop and mobile platforms when combined with supporting software.¹ Intel 64 architecture improves performance by allowing systems to address more than 4 GB of both virtual and physical memory.

Instruction Set

An instruction set refers to the basic set of commands and instructions that a microprocessor understands and can carry out. The value shown represents which Intel’s instruction set this processor is compatible with.

Instruction Set Extensions

Instruction Set Extensions are additional instructions which can increase performance when the same operations are performed on multiple data objects. These can include SSE (Streaming SIMD Extensions) and AVX (Advanced Vector Extensions).

# of AVX-512 FMA Units

Intel® Advanced Vector Extensions 512 (AVX-512), new instruction set extensions, delivering ultra-wide (512-bit) vector operations capabilities, with up to 2 FMAs (Fused Multiply Add instructions), to accelerate performance for your most demanding computational tasks.

Intel® Speed Shift Technology

Intel® Speed Shift Technology uses hardware-controlled P-states to deliver dramatically quicker responsiveness with single-threaded, transient (short duration) workloads, such as web browsing, by allowing the processor to more quickly select its best operating frequency and voltage for optimal performance and power efficiency.

Intel® Deep Learning Boost (Intel® DL Boost)

A new set of embedded processor technologies designed to accelerate AI deep learning use cases. It extends Intel AVX-512 with a new Vector Neural Network Instruction (VNNI) that significantly increases deep learning inference performance over previous generations.

Intel® Resource Director Technology (Intel® RDT)

Intel® RDT brings new levels of visibility and control over how shared resources such as last-level cache (LLC) and memory bandwidth are used by applications, virtual machines (VMs) and containers.

Intel® Volume Management Device (VMD)

Intel® Volume Management Device (VMD) provides a common, robust method of hot plug and LED management for NVMe-based solid state drives.
Short Description
AMD EPYC 7262, 3.2/3.4 GHz, 8C/16T, 128 MB L3 Cache
Intel Xeon Silver 4210, 14M Cache, 2.2 GHz, 85 W TDP, FCLGA3647
Intel Xeon Silver 4215, 11M Cache, 2.5 GHz, 85 W TDP, FCLGA3647
16 Cores, 32 Threads, 3GHz, 3.3GHz Boost, 128MB L3 Cache, Socket SP3, 155W
Intel Xeon Silver Silver 4314 Processor (24MB Cache, up to 3.4 GHz)
Intel Xeon Silver Silver 4310 Processor (18MB Cache, up to 3.3 GHz)
Manufacturer
Lenovo
Fujitsu
Fujitsu
Lenovo
Fujitsu
Fujitsu